A Real-Valued Direction-of-Arrival Estimation Method Based on Subspace Approximation

نویسندگان

  • Lei SUN
  • Huali WANG
  • Guangjie XU
چکیده

In this paper, a completely real-valued approach for direction finding is developed. The proposed algorithm using high order powers of the sample covariance matrix to approximate the noise subspace in the real domain, so that the computational burden is substantially reduced and the number of incident sources is not required. Numerical simulation results demonstrate the satisfying performance of the proposed method under various scenarios with uncorrelated or pairwise correlated signals. Streszczenie. W artykule przedstawiono metodę wyznaczania kierunku, której działanie opiera się na wyznaczaniu wysokich potęg macierzy kowariancji próbki, w celu aproksymacji podprzestrzeni zakłóceń w dziedzinie rzeczywistej. Pozwala to na redukcję obciążenia obliczeniowego. Nie jest wymagana informacja o ilości źródeł. Przedstawiono wyniki symulacji numerycznych, weryfikujące skuteczność proponowanej metody. (Metoda wartości rzeczywistych estymacji kierunku w oparciu o aproksymację podprzestrzeni).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar

In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then,...

متن کامل

Angles of Arrival Estimation with Unitary Partial Propagator

In this paper, we investigated the effect of real valued transformation of the spectral matrix of the received data for Angles Of Arrival estimation problem. Indeed, the unitary transformation of Partial Propagator (UPP) for narrowband sources is proposed and applied on Uniform Linear Array (ULA). Monte Carlo simulations proved the performance of the UPP spectrum comparatively with Forward Back...

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

The Real-Valued Sparse Direction of Arrival (DOA) Estimation Based on the Khatri-Rao Product

There is a problem that complex operation which leads to a heavy calculation burden is required when the direction of arrival (DOA) of a sparse signal is estimated by using the array covariance matrix. The solution of the multiple measurement vectors (MMV) model is difficult. In this paper, a real-valued sparse DOA estimation algorithm based on the Khatri-Rao (KR) product called the L₁-RVSKR is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013